Extracting Phrase Patterns with Minimum Redundancy for Unsupervised Speaker Role Classification
نویسندگان
چکیده
This paper addresses the problem of learning phrase patterns for unsupervised speaker role classification. Phrase patterns are automatically extracted from large corpora, and redundant patterns are removed via a graph pruning algorithm. In experiments on English and Mandarin talk shows, the use of phrase patterns results in an increase of role classification accuracy over n-gram lexical features, and more compact phrase pattern lists are obtained due to the redundancy removal.
منابع مشابه
Automatic social role recognition and its application in structuring multiparty interactions
Automatic processing of multiparty interactions is a research domain with important applications in content browsing, summarization and information retrieval. In recent years, several works have been devoted to find regular patterns which speakers exhibit in a multiparty interaction also known as social roles. Most of the research in literature has generally focused on recognition of scenario s...
متن کاملUnsupervised Information Extraction Approach Using Graph Mutual Reinforcement
Information Extraction (IE) is the task of extracting knowledge from unstructured text. We present a novel unsupervised approach for information extraction based on graph mutual reinforcement. The proposed approach does not require any seed patterns or examples. Instead, it depends on redundancy in large data sets and graph based mutual reinforcement to induce generalized “extraction patterns”....
متن کاملA New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملBioNoculars: Extracting Protein-Protein Interactions from Biomedical Text
The vast number of published medical documents is considered a vital source for relationship discovery. This paper presents a statistical unsupervised system, called BioNoculars, for extracting protein-protein interactions from biomedical text. BioNoculars uses graph-based mutual reinforcement to make use of redundancy in data to construct extraction patterns in a domain independent fashion. Th...
متن کاملDiscriminative MCE-based speaker adaptation of acoustic models for a spoken lecture processing task
This paper investigates the use of minimum classification error (MCE) training in conjunction with speaker adaptation for the large vocabulary speech recognition task of lecture transcription. Emphasis is placed on the case of supervised adaptation, though an examination of the unsupervised case is also conducted. This work builds upon our previous work using MCE training to construct speaker i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010